Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569471

RESUMEN

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Síndrome Metabólico , Obesidad Metabólica Benigna , Adulto , Humanos , Obesidad/metabolismo , Triglicéridos , Síndrome Metabólico/metabolismo , Índice de Masa Corporal , Factores de Riesgo
3.
Proc Natl Acad Sci U S A ; 120(52): e2312666120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127985

RESUMEN

AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.


Asunto(s)
Hígado Graso , Lipodistrofia , Hipernutrición , Masculino , Ratas , Animales , Aciltransferasas/metabolismo , Glicerol , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Ratas Sprague-Dawley , Lipodistrofia/genética , Tejido Adiposo Blanco/metabolismo , Ácidos Fosfatidicos , Inflamación , Fosfatos
4.
Cell Metab ; 35(11): 1887-1896.e5, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37909034

RESUMEN

The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma ß-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma ß-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.


Asunto(s)
Lipogénesis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Lipogénesis/genética , Ácido 3-Hidroxibutírico/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Mitocondrias/metabolismo , Predisposición Genética a la Enfermedad
5.
Sci Transl Med ; 15(715): eade3157, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756381

RESUMEN

Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , FN-kappa B/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Hígado/metabolismo , Hepatocitos/metabolismo , Fibrosis , Macrófagos/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
6.
Diabetes ; 72(12): 1781-1794, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725942

RESUMEN

Insulin activates insulin receptor (IR) signaling and subsequently triggers IR endocytosis to attenuate signaling. Cell division regulators MAD2, BUBR1, and p31comet promote IR endocytosis on insulin stimulation. Here, we show that genetic ablation of the IR-MAD2 interaction in mice delays IR endocytosis, increases IR levels, and prolongs insulin action at the cell surface. This in turn causes a defect in insulin clearance and increases circulating insulin levels, unexpectedly increasing glucagon levels, which alters glucose metabolism modestly. Disruption of the IR-MAD2 interaction increases serum fatty acid concentrations and hepatic fat accumulation in fasted male mice. Furthermore, disruption of the IR-MAD2 interaction distinctly changes metabolic and transcriptomic profiles in the liver and adipose tissues. Our findings establish the function of cell division regulators in insulin signaling and provide insights into the metabolic functions of IR endocytosis. ARTICLE HIGHLIGHTS: The physiological role of IR endocytosis in insulin sensitivity remains unclear. Disruption of the IR-MAD2 interaction delays IR endocytosis and prolongs insulin signaling. IR-MAD2 controls insulin clearance and glucose metabolism. IR-MAD2 maintains energy homeostasis.


Asunto(s)
Resistencia a la Insulina , Receptor de Insulina , Animales , Masculino , Ratones , Endocitosis , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Hígado/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Mad2/metabolismo
7.
Am J Physiol Endocrinol Metab ; 325(1): E46-E61, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224467

RESUMEN

Adipose tissues accumulate excess energy as fat and heavily influence metabolic homeostasis. O-linked N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), which involves the addition of N-acetylglucosamine to proteins by O-GlcNAc transferase (Ogt), modulates multiple cellular processes. However, little is known about the role of O-GlcNAcylation in adipose tissues during body weight gain due to overnutrition. Here, we report on O-GlcNAcylation in mice with high-fat diet (HFD)-induced obesity. Mice with knockout of Ogt in adipose tissue achieved using adiponectin promoter-driven Cre recombinase (Ogt-FKO) gained less body weight than control mice under HFD. Surprisingly, Ogt-FKO mice exhibited glucose intolerance and insulin resistance, despite their reduced body weight gain, as well as decreased expression of de novo lipogenesis genes and increased expression of inflammatory genes, resulting in fibrosis at 24 weeks of age. Primary cultured adipocytes derived from Ogt-FKO mice showed decreased lipid accumulation. Both primary cultured adipocytes and 3T3-L1 adipocytes treated with OGT inhibitor showed increased secretion of free fatty acids. Medium derived from these adipocytes stimulated inflammatory genes in RAW 264.7 macrophages, suggesting that cell-to-cell communication via free fatty acids might be a cause of adipose inflammation in Ogt-FKO mice. In conclusion, O-GlcNAcylation is important for healthy adipose expansion in mice. Glucose flux into adipose tissues may be a signal to store excess energy as fat.NEW & NOTEWORTHY We evaluated the role of O-GlcNAcylation in adipose tissue in diet-induced obesity using adipose tissue-specific Ogt knockout mice. We found that O-GlcNAcylation in adipose tissue is essential for healthy fat expansion and that Ogt-FKO mice exhibit severe fibrosis upon long-term overnutrition. O-GlcNAcylation in adipose tissue may regulate de novo lipogenesis and free fatty acid efflux to the degree of overnutrition. We believe that these results provide new insights into adipose tissue physiology and obesity research.


Asunto(s)
Acetilglucosamina , Ácidos Grasos no Esterificados , Animales , Ratones , Acetilglucosamina/metabolismo , Obesidad/genética , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Peso Corporal/genética , Aumento de Peso , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(4): e2217543120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669104

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, in which prognosis is determined by liver fibrosis. A common variant in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13, rs72613567-A) is associated with a reduced risk of fibrosis in NAFLD, but the underlying mechanism(s) remains unclear. We investigated the effects of this variant in the human liver and in Hsd17b13 knockdown in mice by using a state-of-the-art metabolomics approach. We demonstrate that protection against liver fibrosis conferred by the HSD17B13 rs72613567-A variant in humans and by the Hsd17b13 knockdown in mice is associated with decreased pyrimidine catabolism at the level of dihydropyrimidine dehydrogenase. Furthermore, we show that hepatic pyrimidines are depleted in two distinct mouse models of NAFLD and that inhibition of pyrimidine catabolism by gimeracil phenocopies the HSD17B13-induced protection against liver fibrosis. Our data suggest pyrimidine catabolism as a therapeutic target against the development of liver fibrosis in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Hígado/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Pirimidinas/farmacología , Pirimidinas/metabolismo
9.
Cell Metab ; 35(1): 212-226.e4, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516861

RESUMEN

The mammalian succinate dehydrogenase (SDH) complex has recently been shown as capable of operating bidirectionally. Here, we develop a method (Q-Flux) capable of measuring absolute rates of both forward (VSDH(F)) and reverse (VSDH(R)) flux through SDH in vivo while also deconvoluting the amount of glucose derived from four discreet carbon sources in the liver. In validation studies, a mitochondrial uncoupler increased net SDH flux by >100% in awake rodents but also increased SDH cycling. During hyperglucagonemia, attenuated pyruvate cycling enhances phosphoenolpyruvate carboxykinase efficiency to drive increased gluconeogenesis, which is complemented by increased glutaminase (GLS) flux, methylmalonyl-CoA mutase (MUT) flux, and glycerol conversion to glucose. During hyperinsulinemic-euglycemic clamp, both pyruvate carboxylase and GLS are suppressed, while VSDH(R) is increased. Unstimulated MUT is a minor anaplerotic reaction but is readily induced by small amounts of propionate, which elicits glucagon-like metabolic rewiring. Taken together, Q-Flux yields a comprehensive picture of hepatic mitochondrial metabolism and should be broadly useful to researchers.


Asunto(s)
Metilmalonil-CoA Mutasa , Succinato Deshidrogenasa , Animales , Glucosa/metabolismo , Glutaminasa/metabolismo , Hígado/metabolismo , Metilmalonil-CoA Mutasa/metabolismo , Proteínas/metabolismo , Ácido Pirúvico/metabolismo , Succinato Deshidrogenasa/metabolismo , Roedores
10.
Diabetologia ; 66(3): 567-578, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36456864

RESUMEN

AIMS/HYPOTHESIS: Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS: C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS: We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION: These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/fisiología , Proteína Quinasa C-theta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Cromatografía Liquida , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Insulina/metabolismo , Músculo Esquelético/metabolismo , Triglicéridos/metabolismo , Ceramidas/metabolismo
11.
FEBS Lett ; 597(2): 309-319, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36114012

RESUMEN

Uncoupling protein-3 (UCP3) is a mitochondrial transmembrane protein highly expressed in the muscle that has been implicated in regulating the efficiency of mitochondrial oxidative phosphorylation. Increasing UCP3 expression in skeletal muscle enhances proton leak across the inner mitochondrial membrane and increases oxygen consumption in isolated mitochondria, but its precise function in vivo has yet to be fully elucidated. To examine whether muscle-specific overexpression of UCP3 modulates muscle mitochondrial oxidation in vivo, rates of ATP synthesis were assessed by 31 P magnetic resonance spectroscopy (MRS), and rates of mitochondrial oxidative metabolism were measured by assessing the rate of [2-13 C]acetate incorporation into muscle [4-13 C]-, [3-13 C]-glutamate, and [4-13 C]-glutamine by high-resolution 13 C/1 H MRS. Using this approach, we found that the overexpression of UCP3 in skeletal muscle was accompanied by increased muscle mitochondrial inefficiency in vivo as reflected by a 42% reduction in the ratio of ATP synthesis to mitochondrial oxidation.


Asunto(s)
Canales Iónicos , Mitocondrias , Animales , Ratones , Adenosina Trifosfato/metabolismo , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Mitocondrias Musculares , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Protones , Proteína Desacopladora 3/análisis , Proteína Desacopladora 3/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(49): e2213628119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442127

RESUMEN

Single-nucleotide polymorphisms in the human juxtaposed with another zinc finger protein 1 (JAZF1) gene have repeatedly been associated with both type 2 diabetes (T2D) and height in multiple genome-wide association studies (GWAS); however, the mechanism by which JAZF1 causes these traits is not yet known. To investigate the possible functional role of JAZF1 in growth and glucose metabolism in vivo, we generated Jazf1 knockout (KO) mice and examined body composition and insulin sensitivity both in young and adult mice by using 1H-nuclear magnetic resonance and hyperinsulinemic-euglycemic clamp techniques. Plasma concentrations of insulin-like growth factor 1 (IGF-1) were reduced in both young and adult Jazf1 KO mice, and young Jazf1 KO mice were shorter in stature than age-matched wild-type mice. Young Jazf1 KO mice manifested reduced fat mass, whereas adult Jazf1 KO mice manifested increased fat mass and reductions in lean body mass associated with increased plasma growth hormone (GH) concentrations. Adult Jazf1 KO manifested muscle insulin resistance that was further exacerbated by high-fat diet feeding. Gene set enrichment analysis in Jazf1 KO liver identified the hepatocyte hepatic nuclear factor 4 alpha (HNF4α), which was decreased in Jazf1 KO liver and in JAZF1 knockdown cells. Moreover, GH-induced IGF-1 expression was inhibited by JAZF1 knockdown in human hepatocytes. Taken together these results demonstrate that reduction of JAZF1 leads to early growth retardation and late onset insulin resistance in vivo which may be mediated through alterations in the GH-IGF-1 axis and HNF4α.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Humanos , Ratones , Proteínas Co-Represoras/genética , Diabetes Mellitus Tipo 2/genética , Proteínas de Unión al ADN , Estudio de Asociación del Genoma Completo , Trastornos del Crecimiento , Factor Nuclear 4 del Hepatocito/genética , Resistencia a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Ratones Noqueados
13.
Proc Natl Acad Sci U S A ; 119(10): e2122287119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238637

RESUMEN

SignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Gluconeogénesis , Guanidinas/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Fenformina/farmacología , Animales , Glucosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Hígado/metabolismo , Oxidación-Reducción , Piridinas/farmacología
14.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202005

RESUMEN

Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo Pardo/metabolismo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Inflamación/genética , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Termogénesis/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
15.
Ann N Y Acad Sci ; 1511(1): 87-106, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218041

RESUMEN

Recent research has shed light on the cellular and molecular functions of bioactive lipids that go far beyond what was known about their role as dietary lipids. Bioactive lipids regulate inflammation and its resolution as signaling molecules. Genetic studies have identified key factors that can increase the risk of cardiovascular diseases and metabolic syndrome through their effects on lipogenesis. Lipid scientists have explored how these signaling pathways affect lipid metabolism in the liver, adipose tissue, and macrophages by utilizing a variety of techniques in both humans and animal models, including novel lipidomics approaches and molecular dynamics models. Dissecting out these lipid pathways can help identify mechanisms that can be targeted to prevent or treat cardiometabolic conditions. Continued investigation of the multitude of functions mediated by bioactive lipids may reveal additional components of these pathways that can provide a greater understanding of metabolic homeostasis.


Asunto(s)
Síndrome Metabólico , Animales , Grasas de la Dieta , Homeostasis/fisiología , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Síndrome Metabólico/metabolismo
16.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35167495

RESUMEN

BackgroundNonalcoholic fatty liver affects 25% to 30% of the US and European populations; is associated with insulin resistance (IR), type 2 diabetes, and increased cardiovascular risk; and is defined by hepatic triglyceride (HTG) content greater than 5.56%. However, it is unknown whether HTG content less than 5.56% is associated with cardiometabolic risk factors and whether there are ethnic (Asian Indian, AI, versus non-AI) and/or sex differences in these parameters in lean individuals.MethodsWe prospectively recruited 2331 individuals and measured HTG, using 1H magnetic resonance spectroscopy, and plasma concentrations of triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol, and uric acid. Insulin sensitivity was assessed using Homeostatic Model Assessment of Insulin Resistance and the Matsuda Insulin Sensitivity Index.ResultsThe 95th percentile for HTG in lean non-AI individuals was 1.85%. Plasma insulin, triglycerides, total cholesterol, LDL-cholesterol, and uric acid concentrations were increased and HDL-cholesterol was decreased in individuals with HTG content > 1.85% and ≤ 5.56% compared with those individuals with HTG content ≤ 1.85%, and these altered parameters were associated with increased IR. Mean HTG was lower in lean non-AI women compared with lean non-AI men, whereas lean AI men and women had a 40% to 100% increase in HTG when compared with non-AI men and women, which was associated with increased cardiometabolic risk factors.ConclusionWe found that the 95th percentile of HTG in lean non-AI individuals was 1.85% and that HTG concentrations above this threshold were associated with IR and cardiovascular risk factors. Premenopausal women were protected from these changes whereas young, lean AI men and women manifested increased HTG content and associated cardiometabolic risk factors.FundingGrants from the United States Department of Health and Human Resources (NIH/National Institute of Diabetes and Digestive and Kidney Diseases): R01 DK113984, P30 DK45735, U24 DK59635, and UL1 RR024139; and the Novo Nordisk Foundation (NNF18CC0034900).


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , HDL-Colesterol , LDL-Colesterol , Femenino , Humanos , Masculino , Caracteres Sexuales , Triglicéridos , Ácido Úrico
17.
Aging Cell ; 21(2): e13539, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35088525

RESUMEN

Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti-aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled-release mitochondrial protonophore (CRMP) that is functionally liver-directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver-directed fashion could reduce oxidative damage and improve age-related metabolic disease and lifespan in diet-induced obese mice. Oral administration of CRMP (20 mg/[kg-day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74-week-old) high-fat diet (HFD)-fed C57BL/6J male mice, independently of changes in body weight, whole-body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long-term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94-104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex-specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof-of-concept data to support further studies investigating the use of liver-directed mitochondrial uncouplers to promote healthy aging in humans.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a la Insulina , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo
18.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855620

RESUMEN

Mutations in Dyrk1b are associated with metabolic syndrome and nonalcoholic fatty liver disease in humans. Our investigations showed that DYRK1B levels are increased in the liver of patients with nonalcoholic steatohepatitis (NASH) and in mice fed with a high-fat, high-sucrose diet. Increasing Dyrk1b levels in the mouse liver enhanced de novo lipogenesis (DNL), fatty acid uptake, and triacylglycerol secretion and caused NASH and hyperlipidemia. Conversely, knockdown of Dyrk1b was protective against high-calorie-induced hepatic steatosis and fibrosis and hyperlipidemia. Mechanistically, Dyrk1b increased DNL by activating mTORC2 in a kinase-independent fashion. Accordingly, the Dyrk1b-induced NASH was fully rescued when mTORC2 was genetically disrupted. The elevated DNL was associated with increased plasma membrane sn-1,2-diacylglyerol levels and increased PKCε-mediated IRKT1150 phosphorylation, which resulted in impaired activation of hepatic insulin signaling and reduced hepatic glycogen storage. These findings provide insights into the mechanisms that underlie Dyrk1b-induced hepatic lipogenesis and hepatic insulin resistance and identify Dyrk1b as a therapeutic target for NASH and insulin resistance in the liver.


Asunto(s)
Insulina/metabolismo , Lipogénesis , Hígado/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
19.
Nature ; 600(7888): 314-318, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819664

RESUMEN

Thermogenesis in brown and beige adipose tissue has important roles in maintaining body temperature and countering the development of metabolic disorders such as obesity and type 2 diabetes1,2. Although much is known about commitment and activation of brown and beige adipose tissue, its multiple and abundant immunological factors have not been well characterized3-6. Here we define a critical role of IL-27-IL-27Rα signalling in improving thermogenesis, protecting against diet-induced obesity and ameliorating insulin resistance. Mechanistic studies demonstrate that IL-27 directly targets adipocytes, activating p38 MAPK-PGC-1α signalling and stimulating the production of UCP1. Notably, therapeutic administration of IL-27 ameliorated metabolic morbidities in well-established mouse models of obesity. Consistently, individuals with obesity show significantly decreased levels of serum IL-27, which can be restored after bariatric surgery. Collectively, these findings show that IL-27 has an important role in orchestrating metabolic programs, and is a highly promising target for anti-obesity immunotherapy.


Asunto(s)
Adipocitos/metabolismo , Metabolismo Energético , Interleucina-27/metabolismo , Termogénesis , Animales , Cirugía Bariátrica , Modelos Animales de Enfermedad , Femenino , Humanos , Resistencia a la Insulina , Interleucina-27/sangre , Interleucina-27/uso terapéutico , Masculino , Ratones , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal , Proteína Desacopladora 1/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Nat Commun ; 12(1): 6448, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750386

RESUMEN

Intricate regulatory networks govern the net balance of cholesterol biosynthesis, uptake and efflux; however, the mechanisms surrounding cholesterol homeostasis remain incompletely understood. Here, we develop an integrative genomic strategy to detect regulators of LDLR activity and identify 250 genes whose knockdown affects LDL-cholesterol uptake and whose expression is modulated by intracellular cholesterol levels in human hepatic cells. From these hits, we focus on MMAB, an enzyme which catalyzes the conversion of vitamin B12 to adenosylcobalamin, and whose expression has previously been linked with altered levels of circulating cholesterol in humans. We demonstrate that hepatic levels of MMAB are modulated by dietary and cellular cholesterol levels through SREBP2, the master transcriptional regulator of cholesterol homeostasis. Knockdown of MMAB decreases intracellular cholesterol levels and augments SREBP2-mediated gene expression and LDL-cholesterol uptake in human and mouse hepatic cell lines. Reductions in total sterol content were attributed to increased intracellular levels of propionic and methylmalonic acid and subsequent inhibition of HMGCR activity and cholesterol biosynthesis. Moreover, mice treated with antisense inhibitors of MMAB display a significant reduction in hepatic HMGCR activity, hepatic sterol content and increased expression of SREBP2-mediated genes. Collectively, these findings reveal an unexpected role for the adenosylcobalamin pathway in regulating LDLR expression and identify MMAB as an additional control point by which cholesterol biosynthesis is regulated by its end product.


Asunto(s)
Colesterol/metabolismo , Retroalimentación Fisiológica , Homeostasis , Hígado/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Línea Celular Tumoral , LDL-Colesterol/metabolismo , Perfilación de la Expresión Génica/métodos , Células HeLa , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...